MicroRNAs are Necessary for BMP-7-induced Dendritic Growth in Cultured Rat Sympathetic Neurons
Abstract
Neuronal connectivity is dependent on size and shape of the dendritic arbor. However, mechanisms controlling dendritic arborization, especially in the peripheral nervous system, are not completely understood. Previous studies have shown that bone morphogenetic proteins (BMPs) are important initiators of dendritic growth in peripheral neurons. In this study, we examined the hypothesis that post-transcriptional regulation mediated by microRNAs (miRNAs) is necessary for BMP-7-induced dendritic growth in these neurons. To examine the role of miRNAs in BMP-7-induced dendritic growth, microarray analyses was used to profile miRNA expression in cultured sympathetic neurons from the superior cervical ganglia of embryonic day 21 rat pups at 6 and 24 h after treatment with BMP-7 (50 ng/mL). Our data showed that BMP-7 significantly regulated the expression of 43 of the 762 miRNAs. Of the 43 miRNAs, 22 showed robust gene expression; 14 were upregulated by BMP-7 and 8 were downregulated by BMP-7. The expression profile for miR-335, miR-664-1*, miR-21, and miR-23b was confirmed using qPCR analyses. Functional studies using morphometric analyses of dendritic growth in cultured sympathetic neurons transfected with miRNA mimics and inhibitors indicated that miR-664-1*, miR-23b, and miR-21 regulated early stages of BMP-7-induced dendritic growth. In summary, our data provide evidence for miRNA-mediated post-transcriptional regulation as important downstream component of BMP-7 signaling during early stages of dendritic growth in sympathetic neurons.
Keywords
MicroRNA Dendrite Bone morphogenetic proteins Sympathetic neuronsNotes
Acknowledgements
We thank Donald Bruun and Hao Chen at UC Davis for assistance in setting up and maintaining sympathetic cultures.
Author Contributions
KP did most of the qpCR analysis and the functional studies on individual miRNAs, and helped draft the manuscript. KW completed the functional studies, ST did the microarray studies, and TB and KT helped with the optimization of the qPCR analysis and the functional studies using GAPDH siRNA. PL provided the funding and resources for animal work, and VC designed the study, provided some of the funding for the study, isolated neurons for the study, supervised the students during experimental setup and data analysis, and wrote the manuscript.
Funding
This work was supported by the Saint Mary’s College Summer Research Program (KP, ST, TB) Faculty Development Fund (VC), Faculty Research Grant (VC), and by the National Institute of Environmental Health Sciences (grants ES014901 and ES017592 to PJL). The funding agencies were not involved in the study design, in the collection, analysis, or interpretation of data, in the writing of the report, or in the decision to submit the paper for publication.
Compliance with Ethical Standards
Conflict of interest
The authors declare that they have no conflict of interest.
Ethical Approval
All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of University of California at Davis and Saint Mary’s College of California, where these studies were conducted. This article does not contain any studies with human participants performed by any of the authors.
References
- Ahmed MI, Mardaryev AN, Lewis CJ et al (2011) MicroRNA-21 is an important downstream component of BMP signalling in epidermal keratinocytes. J Cell Sci 124:3399–3404CrossRefPubMedPubMedCentralGoogle Scholar
- Bicker S, Lackinger M, Weiß K, Schratt G (2014) MicroRNA-132, -134, and -138: a microRNA troika rules in neuronal dendrites. Cell Mol Life Sci. https://doi.org/10.1007/s00018-014-1671-7 CrossRefPubMedGoogle Scholar
- Boivin GP, Hickman DL, Creamer-Hente MA et al (2017) Review of CO2 as a Euthanasia agent for laboratory rats and mice. J Am Assoc Lab Anim Sci 56:491–499PubMedPubMedCentralGoogle Scholar
- Bruckenstein DA, Higgins D (1988) Morphological differentiation of embryonic rat sympathetic neurons in tissue culture. Dev Biol 128:337–348. https://doi.org/10.1016/0012-1606(88)90296-5 CrossRefPubMedGoogle Scholar
- Caceres A, Banker G, Steward O et al (1984) MAP2 is localized to the dendrites of hippocampal neurons which develop in culture. Brain Res 315:314–318CrossRefPubMedGoogle Scholar
- Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136:642–655. https://doi.org/10.1016/j.cell.2009.01.035 CrossRefPubMedPubMedCentralGoogle Scholar
- Chandrasekaran V, Lea C, Sosa JC et al (2015) Reactive oxygen species are involved in BMP-induced dendritic growth in cultured rat sympathetic neurons. Mol Cell Neurosci 67:116–125. https://doi.org/10.1016/j.mcn.2015.06.007 CrossRefPubMedPubMedCentralGoogle Scholar
- Chen Y, Gelfond JAL, McManus LM, Shireman PK (2009) Reproducibility of quantitative RT-PCR array in miRNA expression profiling and comparison with microarray analysis. BMC Genom 10:407. https://doi.org/10.1186/1471-2164-10-407 CrossRefGoogle Scholar
- Chen Q, Qiu F, Zhou K et al (2017a) Pathogenic role of microRNA-21 in diabetic retinopathy through downregulation of PPARα. Diabetes 66:1671–1682. https://doi.org/10.2337/db16-1246 CrossRefPubMedPubMedCentralGoogle Scholar
- Chen X, Jiang X-M, Zhao L-J et al (2017b) MicroRNA-195 prevents dendritic degeneration and neuron death in rats following chronic brain hypoperfusion. Cell Death Dis 8:e2850. https://doi.org/10.1038/cddis.2017.243 CrossRefPubMedPubMedCentralGoogle Scholar
- Comery TA, Harris JB, Willems PJ et al (1997) Abnormal dendritic spines in fragile X knockout mice: maturation and pruning deficits. Proc Natl Acad Sci USA 94:5401–5404CrossRefPubMedGoogle Scholar
- Copf T (2016) Impairments in dendrite morphogenesis as etiology for neurodevelopmental disorders and implications for therapeutic treatments. Neurosci Biobehav Rev 68:946–978. https://doi.org/10.1016/J.NEUBIOREV.2016.04.008 CrossRefPubMedGoogle Scholar
- Davies DC (1978) Neuronal numbers in the superior cervical ganglion of the neonatal rat. J Anat 127:43–51PubMedPubMedCentralGoogle Scholar
- Davis TH, Cuellar TL, Koch SM et al (2008) Conditional loss of Dicer disrupts cellular and tissue morphogenesis in the cortex and hippocampus. J Neurosci 28:4322–4330. https://doi.org/10.1523/JNEUROSCI.4815-07.2008 CrossRefPubMedPubMedCentralGoogle Scholar
- Davis BN, Hilyard AC, Nguyen PH et al (2010) Smad proteins bind a conserved RNA sequence to promote microRNA maturation by Drosha. Mol Cell 39:373–384CrossRefPubMedPubMedCentralGoogle Scholar
- De Castro F, Sánchez-Vives MV, Muñoz-Martínez EJ, Gallego R (1995) Effects of postganglionic nerve section on synaptic transmission in the superior cervical ganglion of the guinea-pig. Neuroscience 67:689–695. https://doi.org/10.1016/0306-4522(95)00079-X CrossRefPubMedGoogle Scholar
- De Pablo-Fernandez E, Tur C, Revesz T et al (2017) Association of autonomic dysfunction with disease progression and survival in Parkinson disease. JAMA Neurol 74:970. https://doi.org/10.1001/jamaneurol.2017.1125 CrossRefPubMedPubMedCentralGoogle Scholar
- De Santi C, Vencken S, Blake J et al (2017) Identification of MiR-21-5p as a functional regulator of mesothelin expression using MicroRNA capture affinity coupled with next generation sequencing. PLoS ONE 12:e0170999. https://doi.org/10.1371/journal.pone.0170999 CrossRefPubMedPubMedCentralGoogle Scholar
- Diotel N, Beil T, Strähle U, Rastegar S (2015) Differential expression of id genes and their potential regulator znf238 in zebrafish adult neural progenitor cells and neurons suggests distinct functions in adult neurogenesis. Gene Expr Patterns 19:1–13. https://doi.org/10.1016/j.gep.2015.05.004 CrossRefPubMedGoogle Scholar
- Dorval V, Smith PY, Delay C et al (2012) Gene network and pathway analysis of mice with conditional ablation of Dicer in post-mitotic neurons. PLoS ONE 7:e44060. https://doi.org/10.1371/journal.pone.0044060 CrossRefPubMedPubMedCentralGoogle Scholar
- Drahushuk K, Connell TD, Higgins D (2002) Pituitary adenylate cyclase-activating polypeptide and vasoactive intestinal peptide inhibit dendritic growth in cultured sympathetic neurons. J Neurosci 22:6560–6569CrossRefPubMedGoogle Scholar
- Du J, Yang S, An D et al (2009) BMP-6 inhibits microRNA-21 expression in breast cancer through repressing delta EF1 and AP-1. Cell Res 19:487–496CrossRefPubMedGoogle Scholar
- Fay MJ, Alt LAC, Ryba D et al (2018) Cadmium nephrotoxicity is associated with altered MicroRNA expression in the rat renal cortex. Toxics 6:16. https://doi.org/10.3390/toxics6010016 CrossRefPubMedCentralGoogle Scholar
- Feng J, Liang Y, Wang F, Chen J (2013) Detection of genetically modified tomato using PCR coupled with muParaflo microfluidics microarrays. J Nanosci Nanotechnol 13:8266–8274CrossRefPubMedGoogle Scholar
- Garey L (2010) When cortical development goes wrong: schizophrenia as a neurodevelopmental disease of microcircuits. J Anat 217:324–333. https://doi.org/10.1111/j.1469-7580.2010.01231.x CrossRefPubMedPubMedCentralGoogle Scholar
- Garred MM, Wang MM, Guo X et al (2011) Transcriptional responses of cultured rat sympathetic neurons during BMP-7-induced dendritic growth. PLoS ONE 6:e21754CrossRefPubMedPubMedCentralGoogle Scholar
- Ge X, Zheng L, Huang M et al (2015) MicroRNA expression profiles associated with acquired gefitinib-resistance in human lung adenocarcinoma cells. Mol Med Rep 11:333–340. https://doi.org/10.3892/mmr.2014.2757 CrossRefPubMedGoogle Scholar
- Ghogha A, Bruun DA, Lein PJ (2012) Inducing dendritic growth in cultured sympathetic neurons. J Vis Exp 61:e3546Google Scholar
- Guo X, Metzler-Northrup J, Lein P et al (1997) Leukemia inhibitory factor and ciliary neurotrophic factor regulate dendritic growth in cultures of rat sympathetic neurons. Dev Brain Res 104:101–110. https://doi.org/10.1016/S0165-3806(97)00142-9 CrossRefGoogle Scholar
- Guo X, Chandrasekaran V, Lein P et al (1999) Leukemia inhibitory factor and ciliary neurotrophic factor cause dendritic retraction in cultured rat sympathetic neurons. J Neurosci 19:2113–2121. https://doi.org/10.1523/JNEUROSCI.19-06-02113.1999 CrossRefPubMedGoogle Scholar
- Guo X, Lin Y, Horbinski C et al (2001) Dendritic growth induced by BMP-7 requires Smad1 and proteasome activity. J Neurobiol 48:120–130CrossRefPubMedGoogle Scholar
- Hackbarth H, Küppers N, Bohnet W (2000) Euthanasia of rats with carbon dioxide-animal welfare aspects. Lab Anim 34:91–96. https://doi.org/10.1258/002367700780578055 CrossRefPubMedGoogle Scholar
- Harada A, Teng J, Takei Y et al (2002) MAP2 is required for dendrite elongation, PKA anchoring in dendrites, and proper PKA signal transduction. J Cell Biol 158:541–549. https://doi.org/10.1083/jcb.200110134 CrossRefPubMedPubMedCentralGoogle Scholar
- Higgins D, Lein P, Osterhout DJ, Johnson M (1991) Tissue culture of autonomic neurons. In: Banker G, Goslin K (eds) Culturing nerve cells. MIT Press, Cambridge, pp 177–205Google Scholar
- Higgins D, Burack M, Lein P, Banker G (1997) Mechanisms of neuronal polarity. Curr Opin Neurobiol 7:599–604. https://doi.org/10.1016/S0959-4388(97)80078-5 CrossRefPubMedGoogle Scholar
- Hong J, Zhang H, Kawase-Koga Y, Sun T (2013) MicroRNA function is required for neurite outgrowth of mature neurons in the mouse postnatal cerebral cortex. Front Cell Neurosci 7:151. https://doi.org/10.3389/fncel.2013.00151 CrossRefPubMedPubMedCentralGoogle Scholar
- Horbinski C, Stachowiak MK, Higgins D, Finnegan SG (2001) Polyethyleneimine-mediated transfection of cultured postmitotic neurons from rat sympathetic ganglia and adult human retina. BMC Neurosci 2:2. https://doi.org/10.1186/1471-2202-2-2 CrossRefPubMedPubMedCentralGoogle Scholar
- Impey S, Davare M, Lasiek A et al (2010) An activity-induced microRNA controls dendritic spine formation by regulating Rac1-PAK signaling. Mol Cell Neurosci 43:146–156CrossRefPubMedGoogle Scholar
- Irie K, Tsujimura K, Nakashima H, Nakashima K (2016) MicroRNA-214 promotes dendritic development by targeting the Schizophrenia-associated gene Quaking (Qki). J Biol Chem 291:13891–13904. https://doi.org/10.1074/jbc.M115.705749 CrossRefPubMedPubMedCentralGoogle Scholar
- Ishteiwy RA, Ward TM, Dykxhoorn DM, Burnstein KL (2012) The microRNA -23b/-27b cluster suppresses the metastatic phenotype of castration-resistant prostate cancer cells. PLoS ONE 7:e52106. https://doi.org/10.1371/journal.pone.0052106 CrossRefPubMedPubMedCentralGoogle Scholar
- Jackson KL, Marques FZ, Watson AMD et al (2013) A novel interaction between sympathetic overactivity and aberrant regulation of renin by miR-181a in BPH/2 J genetically hypertensive mice. Hypertension 62:775–781. https://doi.org/10.1161/HYPERTENSIONAHA.113.01701 CrossRefPubMedGoogle Scholar
- Kang H, Davis-Dusenbery BN, Nguyen PH et al (2012) Bone morphogenetic protein 4 promotes vascular smooth muscle contractility by activating microRNA-21 (miR-21), which down-regulates expression of family of dedicator of cytokinesis (DOCK) proteins. J Biol Chem 287:3976–3986. https://doi.org/10.1074/jbc.M111.303156 CrossRefPubMedGoogle Scholar
- Katchy A, Williams C (2014) Profiling of estrogen-regulated microRNAs in breast cancer cells. J Vis Exp. https://doi.org/10.3791/51285 CrossRefPubMedPubMedCentralGoogle Scholar
- Kaufmann WE, Moser HW (2000) Dendritic anomalies in disorders associated with mental retardation. Cereb Cortex 10:981–991CrossRefPubMedGoogle Scholar
- Kim I-J, Beck HN, Lein PJ, Higgins D (2002) Interferon gamma induces retrograde dendritic retraction and inhibits synapse formation. J Neurosci 22:4530–4539CrossRefPubMedGoogle Scholar
- Kim I-J, Drahushuk KM, Kim W-Y et al (2004) Extracellular signal-regulated kinases regulate dendritic growth in rat sympathetic neurons. J Neurosci 24:3304–3312. https://doi.org/10.1523/JNEUROSCI.3286-03.2004 CrossRefPubMedGoogle Scholar
- Kim W-Y, Gonsiorek EA, Barnhart C et al (2009) Statins decrease dendritic arborization in rat sympathetic neurons by blocking RhoA activation. J Neurochem 108:1057–1071CrossRefPubMedPubMedCentralGoogle Scholar
- Kishi T, Hirooka Y, Mukai Y et al (2003) Atorvastatin causes depressor and sympatho-inhibitory effects with upregulation of nitric oxide synthases in stroke-prone spontaneously hypertensive rats. J Hypertens 21:379–386. https://doi.org/10.1097/01.hjh.0000052443.12292.22 CrossRefPubMedGoogle Scholar
- Kondo M, Terada M, Shimizu D et al (1990) Morphometric study of the superior cervical and stellate ganglia of spontaneously hypertensive rats during the prehypertensive stage. Virchows Arch B Cell Pathol Incl Mol Pathol 58:371–376CrossRefPubMedGoogle Scholar
- Konopka W, Schütz G, Kaczmarek L (2011) The microRNA contribution to learning and memory. Neuroscientist 17:468–474CrossRefPubMedGoogle Scholar
- Kosik KS (2006) The neuronal microRNA system. Nat Rev Neurosci 7:911–920CrossRefPubMedGoogle Scholar
- Kulkarni VA, Firestein BL (2012) The dendritic tree and brain disorders. Mol Cell Neurosci 50:10–20. https://doi.org/10.1016/J.MCN.2012.03.005 CrossRefPubMedGoogle Scholar
- Kye MJ, Neveu P, Lee Y-S et al (2011) NMDA mediated contextual conditioning changes miRNA expression. PLoS ONE 6:e24682. https://doi.org/10.1371/journal.pone.0024682 CrossRefPubMedPubMedCentralGoogle Scholar
- Leggio L, Vivarelli S, L’Episcopo F et al (2017) microRNAs in Parkinson’s disease: from pathogenesis to novel diagnostic and therapeutic approaches. Int J Mol Sci 1:2. https://doi.org/10.3390/ijms18122698 CrossRefGoogle Scholar
- Lein P, Johnson M, Guo X et al (1995) Osteogenic protein-1 induces dendritic growth in rat sympathetic neurons. Neuron 15:597–605CrossRefPubMedGoogle Scholar
- Lein PJ, Guo X, Shi GX et al (2007) The novel GTPase Rit differentially regulates axonal and dendritic growth. J Neurosci 27:4725–4736CrossRefPubMedPubMedCentralGoogle Scholar
- Lein PJ, Fryer A, Higgins D (2010) Cell culture: autonomic and enteric neurons. In: Squire LR (ed) Encyclopedia of Neuroscience. Elsevier Ltd, California, pp 625–632Google Scholar
- Li B, Sun H (2013) miR-26a promotes neurite outgrowth by repressing PTEN expression. Mol Med Rep 8:676–680. https://doi.org/10.3892/mmr.2013.1534 CrossRefPubMedGoogle Scholar
- Li X, Wei Y, Wang Z (2018) microRNA-21 and hypertension. Hypertens Res 41:649–661. https://doi.org/10.1038/s41440-018-0071-z CrossRefPubMedGoogle Scholar
- Liu FJ, Kaur P, Karolina DS et al (2015) MiR-335 regulates Hif-1α to reduce cell death in both mouse cell line and rat ischemic models. PLoS ONE 10:e0128432. https://doi.org/10.1371/journal.pone.0128432 CrossRefPubMedPubMedCentralGoogle Scholar
- Liu H, Hao W, Wang X, Su H (2016) miR-23b targets Smad 3 and ameliorates the LPS-inhibited osteogenic differentiation in preosteoblast MC3T3-E1 cells. J Toxicol Sci 41:185–193. https://doi.org/10.2131/jts.41.185 CrossRefPubMedGoogle Scholar
- Luzi E, Marini F, Sala SC et al (2008) Osteogenic differentiation of human adipose tissue-derived stem cells is modulated by the miR-26a targeting of the SMAD1 transcription factor. J Bone Miner Res 23:287–295. https://doi.org/10.1359/jbmr.071011 CrossRefPubMedGoogle Scholar
- Maciotta S, Meregalli M, Torrente Y (2013) The involvement of microRNAs in neurodegenerative diseases. Front Cell Neurosci 7:265. https://doi.org/10.3389/fncel.2013.00265 CrossRefPubMedPubMedCentralGoogle Scholar
- Magill ST, Cambronne XA, Luikart BW et al (2010) microRNA-132 regulates dendritic growth and arborization of newborn neurons in the adult hippocampus. Proc Natl Acad Sci USA 107:20382–20387CrossRefPubMedGoogle Scholar
- Merola A, Romagnolo A, Rosso M et al (2018) Autonomic dysfunction in Parkinson’s disease: a prospective cohort study. Mov Disord 33:391–397. https://doi.org/10.1002/mds.27268 CrossRefPubMedGoogle Scholar
- Mestdagh P, Hartmann N, Baeriswyl L et al (2014) Evaluation of quantitative miRNA expression platforms in the microRNA quality control (miRQC) study. Nat Methods 11:809–815. https://doi.org/10.1038/nmeth.3014 CrossRefPubMedGoogle Scholar
- Meza-Sosa KF, Pedraza-Alva G, Perez-Martinez L (2014) microRNAs: key triggers of neuronal cell fate. Front Cell Neurosci 8:175. https://doi.org/10.3389/fncel.2014.00175 CrossRefPubMedPubMedCentralGoogle Scholar
- Natera-Naranjo O, Aschrafi A, Gioio AE, Kaplan BB (2010) Identification and quantitative analyses of microRNAs located in the distal axons of sympathetic neurons. RNA 16:1516–1529CrossRefPubMedPubMedCentralGoogle Scholar
- Norcini M, Sideris A, Martin Hernandez LA et al (2014) An approach to identify microRNAs involved in neuropathic pain following a peripheral nerve injury. Front Neurosci 8:266. https://doi.org/10.3389/fnins.2014.00266 CrossRefPubMedPubMedCentralGoogle Scholar
- Pardo CA, Eberhart CG (2007) The neurobiology of Autism. Brain Pathol 17:434–447. https://doi.org/10.1111/j.1750-3639.2007.00102.x CrossRefPubMedGoogle Scholar
- Pavlopoulos E, Trifilieff P, Chevaleyre V et al (2011) Neuralized1 activates CPEB3: a function for nonproteolytic ubiquitin in synaptic plasticity and memory storage. Cell 147:1369–1383. https://doi.org/10.1016/j.cell.2011.09.056 CrossRefPubMedPubMedCentralGoogle Scholar
- Penzes P, Cahill ME, Jones KA et al (2011) Dendritic spine pathology in neuropsychiatric disorders. Nat Neurosci 14:285–293. https://doi.org/10.1038/nn.2741 CrossRefPubMedPubMedCentralGoogle Scholar
- Peruzzi D, Hendley ED, Forehand CJ (1991) Hypertrophy of stellate ganglion cells in hypertensive, but not hyperactive, rats. Am J Physiol 261:R979–R984. https://doi.org/10.1152/ajpregu.1991.261.4.R979 CrossRefPubMedGoogle Scholar
- Purves D (1975) Functional and structural changes in mammalian sympathetic neurones following interruption of their axons. J Physiol 252:429–463CrossRefPubMedPubMedCentralGoogle Scholar
- Purves D, Hume RI (1981) The relation of postsynaptic geometry to the number of presynaptic axons that innervate autonomic ganglION. J Neurosci 1:441–452CrossRefPubMedGoogle Scholar
- Purves D, Lichtman JW (1985) Geometrical differences among homologous neurons in mammals. Science 228:298–302CrossRefPubMedGoogle Scholar
- Purves D, Hadley RD, Voyvodic JT (1986) Dynamic changes in the dendritic geometry of individual neurons visualized over periods of up to three months in the superior cervical ganglion of living mice. J Neurosci 6:1051–1060. https://doi.org/10.1523/JNEUROSCI.06-04-01051.1986 CrossRefPubMedGoogle Scholar
- Qin W, Zhao B, Shi Y et al (2009) BMPRII is a direct target of miR-21. Acta Biochim Biophys Sin (Shanghai) 41:618–623CrossRefGoogle Scholar
- Reales E, Bernabé-Rubio M, Casares-Arias J et al (2015) The MAL protein is crucial for proper membrane condensation at the ciliary base, which is required for primary cilium elongation. J Cell Sci 128:2261–2270. https://doi.org/10.1242/jcs.164970 CrossRefPubMedGoogle Scholar
- Reinke C, Carthew R (2008) BMP signaling goes posttranscriptional in a microRNA sort of way. Dev Cell 15:174–175CrossRefPubMedPubMedCentralGoogle Scholar
- Rogler CE, LeVoci L, Ader T et al (2009) MicroRNA-23b cluster microRNAs regulate transforming growth factor-beta/bone morphogenetic protein signaling and liver stem cell differentiation by targeting Smads. Hepatology 50:575–584. https://doi.org/10.1002/hep.22982 CrossRefPubMedGoogle Scholar
- Rubin E (1985) Development of the rat superior cervical ganglion: initial stages of synapse formation. J Neurosci 5:697–704CrossRefPubMedGoogle Scholar
- Saj A, Lai EC (2011) Control of microRNA biogenesis and transcription by cell signaling pathways. Curr Opin Genet Dev 21:504–510CrossRefPubMedPubMedCentralGoogle Scholar
- Sandoval-Bórquez A, Polakovicova I, Carrasco-Véliz N et al (2017) MicroRNA-335-5p is a potential suppressor of metastasis and invasion in gastric cancer. Clin Epigenetics 9:114. https://doi.org/10.1186/s13148-017-0413-8 CrossRefPubMedPubMedCentralGoogle Scholar
- Sathyan P, Golden HB, Miranda RC (2007) Competing interactions between micro-RNAs determine neural progenitor survival and proliferation after ethanol exposure: evidence from an ex vivo model of the fetal cerebral cortical neuroepithelium. J Neurosci 27:8546–8557. https://doi.org/10.1523/JNEUROSCI.1269-07.2007 CrossRefPubMedPubMedCentralGoogle Scholar
- Shi L, Liao J, Liu B et al (2015) Mechanisms and therapeutic potential of microRNAs in hypertension. Drug Discov Today 20:1188–1204. https://doi.org/10.1016/j.drudis.2015.05.007 CrossRefPubMedPubMedCentralGoogle Scholar
- Shinde S, Mukhopadhyay S, Mohsen G, Khoo SK (2015) Biofluid-based microRNA biomarkers for Parkinson’s disease: an overview and update. Peer Rev Artic 2:15–25Google Scholar
- Siegel G, Obernosterer G, Fiore R et al (2009) A functional screen implicates microRNA-138- dependent regulation of the depalmitoylation enzyme APT1 in dendritic spine morphogenesis. Nat Cell Biol 11:705. https://doi.org/10.1038/ncb1876 CrossRefPubMedPubMedCentralGoogle Scholar
- Smolen AJ, Wright LL, Cunningham TJ (1983) Neuron numbers in the superior cervical sympathetic ganglion of the rat: a critical comparison of methods for cell counting. J Neurocytol 12:739–750. https://doi.org/10.1007/BF01258148 CrossRefPubMedGoogle Scholar
- Strickland IT, Richards L, Holmes FE et al (2011) Axotomy-induced miR-21 promotes axon growth in adult dorsal root ganglion neurons. PLoS ONE 6:e23423CrossRefPubMedPubMedCentralGoogle Scholar
- Su X, Liao L, Shuai Y et al (2015) MiR-26a functions oppositely in osteogenic differentiation of BMSCs and ADSCs depending on distinct activation and roles of Wnt and BMP signaling pathway. Cell Death Dis 6:e1851–e1851. https://doi.org/10.1038/cddis.2015.221 CrossRefPubMedPubMedCentralGoogle Scholar
- Supekar K, Uddin LQ, Khouzam A et al (2013) Brain hyperconnectivity in children with autism and its links to social deficits. Cell Rep 5:738–747. https://doi.org/10.1016/j.celrep.2013.10.001 CrossRefPubMedPubMedCentralGoogle Scholar
- Tai H-C, Schuman EM (2006) MicroRNA: microRNAs Reach out into Dendrites. Curr Biol 16:R121–R123. https://doi.org/10.1016/J.CUB.2006.02.006 CrossRefPubMedGoogle Scholar
- van Spronsen M, van Battum EY, Kuijpers M et al (2013) Developmental and activity-dependent miRNA expression profiling in primary hippocampal neuron cultures. PLoS ONE 8:e74907. https://doi.org/10.1371/journal.pone.0074907 CrossRefPubMedPubMedCentralGoogle Scholar
- Vigelsø A, Dybboe R, Hansen CN et al (2015) GAPDH and β-actin protein decreases with aging, making Stain-Free technology a superior loading control in Western blotting of human skeletal muscle. J Appl Physiol 118:386–394. https://doi.org/10.1152/japplphysiol.00840.2014 CrossRefPubMedGoogle Scholar
- Wang J, Greene SB, Bonilla-Claudio M et al (2010) Bmp signaling regulates myocardial differentiation from cardiac progenitors through a MicroRNA-mediated mechanism. Dev Cell 19:903–912CrossRefPubMedPubMedCentralGoogle Scholar
- Wei C, Henderson H, Spradley C et al (2013) Circulating miRNAs as potential marker for pulmonary hypertension. PLoS ONE 8:e64396. https://doi.org/10.1371/journal.pone.0064396 CrossRefPubMedPubMedCentralGoogle Scholar
- Wotton D, Massague J (2000) Transcriptional control by the TGF- b/Smad signaling system. EMBO J 19:1745–1754CrossRefPubMedPubMedCentralGoogle Scholar
- Wu T, Chen W, Liu S et al (2014) Huaier suppresses proliferation and induces apoptosis in human pulmonary cancer cells via upregulation of miR-26b-5p. FEBS Lett 588:2107–2114. https://doi.org/10.1016/j.febslet.2014.04.044 CrossRefPubMedGoogle Scholar
- Yuan M, Tang Y, Zhou C et al (2016) Elevated plasma CaM expression in patients with acute cerebral infarction predicts poor outcomes and is inversely associated with miR-26b expression. Int J Neurosci 126:408–414. https://doi.org/10.3109/00207454.2015.1020537 CrossRefPubMedGoogle Scholar
- Zhou X et al (2012) MicroRNA Profiling Using µParaflo Microfluidic Array Technology. In: Fan JB (ed) Next-generation MicroRNA expression profiling technology. Humana Press, New York, pp 153–182CrossRefGoogle Scholar